Data Science

Learn Python, Data Analysis, Machine Learning, and real-world project implementation.

Module 1
Introduction to Data Science
  • What is Data Science?
  • Data Science vs AI vs ML vs Data Analytics
  • Applications in Healthcare, Finance, Marketing
  • Data Science Lifecycle
  • Career Roles & Tools Overview
Module 2
Python Programming Fundamentals
  • Python Installation & Anaconda
  • Jupyter Notebook & VS Code
  • Variables, Data Types, Operators
  • Conditions & Loops
  • Functions & Lambda
  • Exception & File Handling
Module 3
Python for Data Analysis
  • NumPy Arrays & Operations
  • Pandas Series & DataFrames
  • CSV, Excel, JSON Handling
  • Data Filtering & GroupBy
  • Merge, Join & Missing Values
  • Data Cleaning Techniques
Module 4
Data Visualization
  • Matplotlib – Line, Bar, Pie, Histogram
  • Seaborn – Heatmap, Boxplot, Pairplot
  • Plot Customization
  • Visual Storytelling
Module 5
Exploratory Data Analysis (EDA)
  • Understanding Dataset Structure
  • Descriptive Statistics
  • Outliers & Correlation Analysis
  • EDA on Real Datasets
Module 6
Statistics for Data Science
  • Mean, Median, Mode
  • Variance & Standard Deviation
  • Probability & Distribution
  • Z-Test & T-Test
  • Correlation & Covariance
Module 7
Machine Learning Fundamentals
  • Supervised & Unsupervised Learning
  • Model Training & Testing
  • Bias-Variance Tradeoff
Module 8
Supervised Machine Learning
  • Linear & Logistic Regression
  • KNN, Decision Tree, Random Forest
  • SVM
  • Accuracy, Precision, Recall, F1
Module 9
Unsupervised Learning
  • K-Means & Hierarchical Clustering
  • PCA – Dimensionality Reduction
Module 10
Projects & Career Preparation
  • Capstone Project (Real Dataset)
  • GitHub Portfolio
  • Resume & Interview Preparation
  • Industry Case Studies
  • Freelancing & Job Guidance
  • SQL for Data Science